
Chase Joyner

802 Homework 4

April 3, 2017

Problem 11.2

As used in the proof to Theorem 11.2b, show that∫ ∞
0

tae−btdt = b−(a+1)Γ(a+ 1).

Solution: Let u = bt. Then, by this change of variable we have∫ ∞
0

tae−btdt =
1

b

∫ ∞
0

(u
b

)a
e−udu = b−(a+1)

∫ ∞
0

ua+1−1e−udu = b−(a+1)Γ(a+ 1),

where we obtain the last equality using the known Gamma function.

Problem 11.3

(a) Show that (I + XVX′)−1 = I−X(X′X + V−1)−1X′.

Solution: Notice that

(I + XVX′)× (I−X(X′X + V−1)−1X′)

= I−X(X′X + V−1)−1X′ + XVX′ −XVX′X(X′X + V−1)−1X′

= I + XV
[
V−1(X′X + V−1)−1 + I−X′X(X′X + V−1)−1

]
X′

= I + XV
[
I− (V−1 + X′X)(X′X + V−1)−1

]
X′

= I + XV[I− I]X′ = I.

The exact argument above can also be used to show that

(I−X(X′X + V−1)−1X′)× (I + XVX′) = I.

This shows the result.
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(b) Show that (I + XVX′)−1X = X(X′X + V−1)−1V−1.

Solution: Considering the difference and part (a), we find

(I + XVX′)−1X−X(X′X + V−1)−1V−1

=
[
I−X(X′X + V−1)−1X′

]
X−X(X′X + V−1)−1V−1

= X−X(X′X + V−1)−1X′X−X(X′X + V−1)−1V−1

= X−X(X′X + V−1)−1(X′X + V−1)

= X−X = 0

which shows the result.

(c) Show that V−1 −V−1(X′X + V−1)−1V−1 = X′(I + XVX′)−1X.

Solution: By equation (2.54) in the text, we obtain

V−1 −V−1(X′X + V−1)−1V−1

=
[
V + (X′X)−1(X′X)(X′X)−1

]−1
=
[
(X′X)−1 + V

]−1
.

Now, by (2.54) again,[
(X′X)−1 + V

]−1
= X′X−X′X(X′X + V−1)−1X′X

and therefore we have that

V−1 −V−1(X′X + V−1)−1V−1

= X′X−X′X(X′X + V−1)−1X′X

= X′
[
I−X(X′X + V−1)−1X′

]
X

= X′(I + XVX′)−1X

where the last equality is from part (a).
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Problem 5.20

(a) We can see that the t distribution is a mixture of normals using the following argument:

P (Tν ≤ t) = P

(
Z√
χ2
ν/ν
≤ t

)
=

∫ ∞
0

P (Z ≤ t
√
x/
√
ν)P (χ2

ν = x)dx,

where Tν is a t random variable with ν degrees of freedom. Using the Fundamental Theorem
of Calculus and interpreting P (χ2

ν = x) as a pdf, we obtain

fTν (t) =

∫ ∞
0

1√
2π
e−t

2x/2ν

√
x√
ν

1

Γ(ν/2)2ν/2
xν/2−1e−x/2dx,

a scale mixture of normals. Verify this formula by direct integration.

Solution: Notice that∫ ∞
0

1√
2π
e−t

2x/2ν

√
x√
ν

1

Γ(ν/2)2ν/2
xν/2+1/2−1e−x/2dx

=
1√
2π

1
√
ν Γ(ν/2)2ν/2

∫ ∞
0

x(ν+1)/2−1e−t
2x/2ν−x/2dx

=
1√
2π

1
√
ν Γ(ν/2)2ν/2

∫ ∞
0

x(ν+1)/2−1e−x(t
2/2ν+1/2)dx

=
1√
2π

1
√
ν Γ((ν/2)2ν/2

· Γ
(
(ν + 1)/2

) 1

(t2/2ν + 1/2)(ν+1)/2

=
1√
2π

Γ
(
(ν + 1)/2

)
√
ν Γ((ν/2)2ν/2

(
2ν

t2 + ν

)(ν+1)/2

=
1√
νπ

Γ
(
(ν + 1)/2

)
Γ((ν/2)2ν/2

(
1

t2 + ν

)(ν+1)/2

which is the pdf of a tν random variable. This shows the result.

(b) A similar formula holds for the F distribution; that is, it can be written as a mixture of chi
squareds. If F1,ν is an F random variable with 1 and ν degrees of freedom, then we can write

P (F1,ν ≤ νt) =

∫ ∞
0

P (χ2
1 ≤ ty)fν(y)dy,

where fν(y) is a χ2
ν pdf. Use the Fundamental Theorem of Calculus to obtain an integral

expression for the pdf of F1,ν , and show that the integral equals the pdf.

Solution: Taking the derivative of both sides and interchanging the derivative with the
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integral, we have

νf1,ν(νt) =
d

dt

∫ ∞
0

P (χ2
1 ≤ ty)fν(y)dy =

∫ ∞
0

d

dt
P (χ2

1 ≤ ty)fν(y)dy

=

∫ ∞
0

yf1(ty)fν(y)dy

=

∫ ∞
0

y
1√

2 Γ(1/2)
(ty)−1/2e−ty/2 · 1

2ν/2Γ(ν/2)
yν/2−1e−y/2dy

=
t−1/2

2(ν+1)/2Γ(1/2)Γ(ν/2)

∫ ∞
0

y(ν+1)/2−1e−(t+1)y/2dy

=
t−1/2

2(ν+1)/2Γ(1/2)Γ(ν/2)
·

Γ
(
(ν + 1)/2

)[
(t+ 1)/2

](ν+1)/2

=
t−1/2

Γ(1/2)Γ(ν/2)
·

Γ
(
(ν + 1)/2

)
(t+ 1)(ν+1)/2

.

This implies that

f1,ν(νt) =
t−1/2

νΓ(1/2)Γ(ν/2)
·

Γ
(
(ν + 1)/2

)
(t+ 1)(ν+1)/2

.

For clarity, consider x = νt and so the above becomes

f1,ν(νt) =
Γ
(
(ν + 1)/2

)
νΓ(1/2)Γ(ν/2)

(x/ν)−1/2

(1 + x/ν)(ν+1)/2

=
Γ
(
(ν + 1)/2

)
νν/2

Γ(1/2)Γ(ν/2)

x1/2−1

(ν + x)(1+ν)/2

and the RHS above is indeed the pdf of an F1,ν random variable.
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